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RANDOM CURDS AS MATHEMATICAL MODELS  

OF FRACTAL RHYTHM IN ARCHITECTURE 

Ivana Ćirović1, Business Technical College of Vocational Studies, Užice, Srbia 
 
 

The author Carl Bovill has suggested and described a method for generating rhythm in architecture with the help of random curds, as 
they are the mathematical models of unpredictable and uneven groupings which he recognizes in natural shapes and in natural 
processes. He specified the rhythm generated in this way as the fractal rhythm. Random curds can be generated by a simple process 
of curdling, as suggested by B. Mandelbrot. This paper examines the way in which the choice of probability for every stage or level of 
the curdling process, and the number of stages in the procedure of curdling, affect the characteristics of the obtained fractal object 
as a potential mathematical model of rhythm in the design process. At the same time, this paper examines the characteristics of 
rhythm in architecture which determine whether the obtained fractal object will be accepted as an appropriate mathematical model of 
the observed rhythm.  
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INTRODUCTION 1 

Numerous studies have shown that fractal objects 
which belong to the class of random fractals can 
be successfully used to describe, manipulate, and 
simulate a lot of natural shapes and processes 
(Avnir et al., 1998; Feder, 1988; Mandelbrot, 
1982; Peitgen, 2004; Voss, 1988). Random curds 
are fractal objects belonging to the class of 
random fractals, which, according to Bovill 
(1996:92), represents a 'disconnected set of 
points that has a clustered characteristic'. Bovill 
(1996) took random curds as the mathematical 
models of natural rhythm, or natural distribution, 
and described the procedure of transferring this 
rhythm from a model to the rhythm in 
architecture, thus achieving the variation in 
architectural compositions similar to random 
clustering of matter in nature, such as, for 
example, the clusters of stars and galaxies 
(Mandelbrot, 1982). The author defined the 
rhythm, or the random and uneven distribution of 
similar elements generated in this way, as the 
fractal rhythm, or fractal distribution. 

A lot of authors have studied the potential of some 
geometric objects, such as planes and space 
curves and surfaces, and concepts, such as the 

                                                           
1Trg Svetog Save 34, 31000 Užice, Serbia 
ivana.cirovic1@gmail.com 

concept of cellular automata (CA), to support the 
generative processes in the field of architectural 
and urban design (e.g. Petruševski et al., 2009; 
2010). This paper continues the studies in the 
same direction, and examines the possibility of 
using fractal geometry as a design tool in the 
exploration of architectural and urban forms. 

Various studies have been conducted in 
environmental psychology in order to research the 
influence of natural and built environment on 
people (e.g., Hartig et al., 2003; Kaplan and 
Kaplan, 1989; Kaplan, 1995; Purcell et al., 2001; 
Parsons, 1991; Ulrich, 1993; Van den Berg et al., 
2007). They have revealed that people give a 
greater preference to natural features and that 
natural features in our environment have a 
favorable effect on the psychological and 
physiological condition of people. However, 
modern urban life has reduced the opportunity of 
exposure to natural features, which, as scientists 
assume, can have long-term negative 
consequences. According to Joye (2006; 2007), 
we can mitigate this negative trend, at least 
partially, if we use the shapes and principles of 
fractal geometry, as the ‘geometry of nature’ 
(Avnir et al., 1998; Mandelbrot, 1982) in 
architectural and urban planning and design. 

Random fractals, as well as deterministic fractals, 
are the objects of fractal geometry, resulting from 
the constructional procedures which are usually 

recursive. But the process of the construction of 
random fractals includes a component of 
randomness, so the algorithms for their 
construction are nondeterministic. Thus, with 
deterministic or exact fractals, the same pattern is 
repeated in new iterations or with every change of 
scale, so here we can talk about the exact self-
similarity. On the other hand, when it comes to 
random fractals, the invariability through different 
scales is statistical; namely we don’t have the 
exact, but the statistical self-similarity and 
because of it, every magnified section looks 
similar to, but not exactly the same as the global 
pattern from which it is extracted (Mandelbrot, 
1982; Voss, 1988). According to Voss (1988), 
the important thing here is the fact that the 
aforementioned feature of the statistical self-
similarity represents the central characteristic of 
fractals in nature.  

Certain studies have proved that the thing 
responsible for the visual feature of naturalness, 
sometimes ascribed to certain fractal objects, is 
the very component of randomness which is 
included into the process of generating such 
objects. The authors Peitgen et al. (2004:425) 
incorporated the component of randomness into 
the process of generating a deterministic fractal 
set, also known as the Koch curve, expecting to 
get a 'realistic natural shape'. The obtained fractal 
curve had the same fractal dimension as the exact 
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Koch curve, but, according to the authors: 'the 
visual appearance is drastically different; it looks 
much more like the outline of an island than the 
original snowflake curve' (ibid.:425). Similarly, 
comparing the exact Koch curve and a random 
Koch curve, Taylor and Sprott (2008:119) 
emphasized that the former was not sufficiently 
similar to natural shapes, because 'the exact 
repetition of patterns creates cleanliness rarely 
found in natural forms'. On the other hand, the 
authors claimed that, owing to a certain measure 
of randomness, that 'artificial look' could be 
avoided with the latter curd and a 'more natural-
looking fractal'  could be obtained. (ibid.:119) 
Another important thing is that in some studies of 
aesthetic preferences across fractal objects, this 
feature, the so-called naturalness, appears as a 
significant correlate of greater preferences 
(Richards, 2001). Also, Bovill (1996:6) observed 
that in its shapes and in the way it changes over 
time, nature shows a certain measure of 
randomness, i.e. the right measure of 
predictability and randomness, or 'the mixture of 
order and surprise'. So, according to him, using 
random curds, which already have the component 
of randomness or ‘surprise’ in themselves, as a 
design tool, the randomness could be included 
into the design process, which is one of the ways 
to ensure that buildings are in sympathy with their 
natural surroundings.  

RHYTHM IN ARCHITECTURAL 
COMPOSITION 

The elements, units, or motifs of an architectural 
composition which are identical or have similar 
features or a similar role in the composition, are 
responsible for the experience of the visual 
rhythm in an observer because of their multiple 
appearances in the same or modified form 
(Arnheim, 1974; Ching, 2007). When we mention 
the visual features of elements, we think of their 
size or position, as much as of the distinctive 
quality of their shapes and surfaces, e.g. the 
colour or hue, texture, transparency, etc. In Figure 
1, in multiple occurrences of the observed 
element, which clearly represents a single 
element on the specific scale of observation or at 
a given level of organization (for example, a 
facade panel or a floor tile), characterized by 
specific visual features (e.g. colour or shape), the 
actual values of its visual features are either 
repeated, or modified (in other words, they can be 
either identical or more or less distinct from 
element to element), thus generating a specific 
visual rhythm.  

Since the topic of this paper is how to generate 
rhythm in an architectural composition, as part of 
the design process, then the concept of the value 
of visual features here won't refer to any possible 
value that the mentioned feature can theoretically 

have, but only to the specific value determined in 
advance for a specific observed case of rhythm 
generation in an architectural composition (e.g. if 
we take the windows on a front wall as the 
elements whose multiple appearances create the 
visual rhythm, then the specific values of the 
majority of visual features, e.g. heights and 
widths, or sill elevations, will be determined 
depending on the function of the inner space, 
story height, window type, etc.). 

RANDOM CURDS AS MODELS OF 
RHYTHM 

Random curds can be produced by a simple 
process of curdling (Mandelbrot, 1982). It is a 
cascade process, which results in contraction 
and, according to Mandelbrot (1982:84), it 
originated from the attempt to 'mimic reality by 
purely geometric means'.  

To create these fractals we need a 'grid or lattice, 
made of intervals, squares, or cubes, each divided 
into bE subintervals, subsquares, or subcubes; b is 
the lattice base' (ibid.:210), where E equals 1, 2 
or 3, for intervals, squares, or cubes, respectively. 
Curdling, or random clustering is achieved by a 
sequence of binary random choices which 
decides the later fate of each of bE subintervals, 
subsquares, or subcubes. With the 'probability 
p<1, the subinterval ‘survives’ as part of a 
precurd; otherwise, it dies off' (ibid.:211). With the 
‘surviving’ intervals, squares, or cubes, we 
continue to the next stage of the cascade. By 
selecting the probability of the event for every 
stage of the process, as well as the number of 
stages, we can get a model of random clustering 
of elements, with desired characteristics. The 
probabilities p=1/2, 1/3, 2/3, etc., may be 
simply obtained by tossing a coin or a dice.  

Number of Values of Visual Features 

The values of a visual feature of an architectural 
element are determined in advance for each 
particular case of rhythm generation, in 
accordance with the specific role that the 
observed element plays in an architectural 
composition, or with other specific requirements. 
If the rhythm is generated with the help of 
random curds, then the number of determined 
values is very important.  

Namely, if the number of determined values is 
two, one random curd can be the mathematical 
model of the rhythm, because a random curd on 
every scale of observation also consists of 
subintervals, subsquares, or subcubes, which can 
be in only one of these two conditions: ‘survives’ 
– ‘does not survive’, and the binary relation 
‘empty-full’, or ‘exists -does not exist’ can be 
translated into ‘this one exists - that one exists’, so 
that each of the two possible conditions in the 
process of rhythm generation will be an analogue 
for one value of a visual feature of an architectural 
element. In Figure 2, we can see a random curd, 
generated in the process of curdling through two 
stages, with 42 subsquares in every stage. Each 
subsquare is in one of the two possible 
conditions. 

If the number of determined values is greater 
than two, we suggest overlapping two or more 
random curds, provided they have the same size 
and number bE of subintervals, subsquares,  
or subcubes.  

If we overlap two random curds, then each of bE 
subintervals, subsquares, or subcubes (on the 
given scale of observation) can occur in one of 
the four possible conditions: one curd ‘survives’, 
the other curd ‘survives’, both curds ‘survive’, 
neither curd ‘survives’. Thus, by overlapping two 

 
Figure 1. Multiple occurrences of elements  

in the same or modified form 

 

 
Figure 2. Mathematical model for rhythm  

of two values of visual features    

 
Figure 3. Mathematical model for rhythm of four values of visual features    
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random curds, we can obtain the mathematical 
model for those cases of the rhythm of the visual 
features of architectural elements where the 
number of the determined values is four. In Figure 
3, we overlapped two random curds generated in 
the process of curdling through two stages, with 
42 subsquares, each in every stage, and with the 
probability of 3/4 in the first stage and 2/3 in the 
second one. 

Similarly, if we overlap three random curds, then 
each of bE subintervals, subsquares, or subcubes 
(on a given scale of observation) occurs in one 
of the eight possible conditions. Thus, by 
overlapping three random curds, we can obtain 
the mathematical model for those cases of the 
rhythm of the visual features of architectural 
elements where the number of the determined 
values is eight. For example, the elements in 
eight colours in Figure 1 are arranged with the 
help of three overlapped random curds, 
generated in the process of curdling through two 
stages, with 42 subsquares, each in every stage, 
and with the probability of 3/4 in the first stage 
and 2/3 in the second one.  

Therefore, the number of the determined values 
of visual features is important here, because by 
overlapping two or more random curds, we can 
get the mathematical models for rhythm 
generation in architectural compositions only for 
the cases where that number is equal to the 
number of all possible different outcomes for the 
overlapped random curds. Namely, if the 
number of overlapped random curds is marked 
with n, then the number of different possible 
outcomes, marked with R is equal to the sum of 
the number of combinations of n elements of the 
first class, second class, etc, to the n-th class, 
plus one (one refers to the outcome when all the 
overlapped subintervals, subsquares, or 
subcubes are those that ‘don’t survive’), which 
can be mathematically expressed as: 

(1) 

Here, the subintervals, subsquares, or subcubes 
which ‘do not survive’ are treated the same, for 
all curds. Namely, they are treated as ‘empty’ or 
‘neutral’, i.e. as such entities whose presence 
does not affect the outcomes.  

When we use the mathematical model obtained 
by the described overlapping of two or more 
random curds as a design tool, the way we treat 
the overlapping of the subintervals, subsquares 
and subcubes which ‘survive’ is important for 
the final appearance of the generated rhythm. 
So, overlapping can cause ‘the loss’ of the initial 
value and the appearance of a new value, as 
shown in Figure 3, where the overlapping of two 
colours, blue and red for example, results in the 
third one - purple. In this case, the newly 

synthesized value is actually a sort of the median 
of the initial values and, as such, it is possible in 
the situations when the initial values are of the 
same kind, and mutually comparable on some 
scale of values.  

Also, if we have, for example, some dimensional 
visual features, the values of which could be 
‘summed’ in some way, this new value could 
possibly be the visual equivalent of their ‘sum’. In 
Figure 4, which shows an irregularly perforated 
surface, we used three overlapped random curds 
as a mathematical model, generated in the 
process of curdling, through two stages, with 42 
subsquares, each in every stage, and with the 
probability of 1/2 in both stages. Their subsquares 
which ‘survived’ were an analogue for the circular 
openings of the same size, but in three different 
positions in relation to the centre of the 
subsquare. The subsquares, on which two or three 

circular openings overlapped, were treated in 
such a way that the overlapped openings were 
replaced with the appropriate larger circular 
openings, as the visual equivalents of their ‘sum’. 

In addition to the described situation when we 
obtained a new value by overlapping the initial 
values (two colours gave the third one, or two 
smaller openings gave a larger one, etc.), which 
could be mathematically expressed as:  
a+b=c, there is also a possible approach where 
the initial values are not replaced with a new 
value, but retain their initial features even after 
overlapping, and remain visually present, which 
could be expressed as: a+b=ab.  

First we overlapped two random curds, as shown 
in Figure 5a, and then three, as shown in Figure 
5b, generated in the process of curdling through 
two stages, with 42 subsquares, each in every 
stage. Then we used the obtained model to 

 

 
Figure 4. Perforated surface generated by means of three overlapped random curds 

 

      

 

Figures 5a. and 5b. Distribution of the elements (trees, benches and floor tiles) of an imaginary park 
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distribute the elements of an imaginary park, so 
that the curds represented the analogues for the 
following elements: a tree, bench, or grey floor 
tiles. The ‘empty’ fields with all three curds were 
an analogue for white floor tiles. 

Probability for Each Stage 

The chosen probability for each stage of the 
generation process in the procedure of 
curdling is important because the presence or 
occurrence of the fields which ‘survive’ or ‘do 
not survive’ depends on it. Since we are 
talking about probability, the actual occurrence 
more or less approaches the expected 
occurrence. A different probability can be 
chosen for each stage of the process. For 
example, in Figure 3, we generated two 
random curds, with 42 subsquares, each in every 
stage, in the process of curdling through two 
stages, with the same probability of surviving: 3/4 
in the first stage and 2/3 in the second one. The 
probability of a field to survive after the second 
stage was 3/4 x 2/3=1/2, which means that in 
both attempts, the expected number of the 
surviving fields was 256/2=128. The actual 
number of the surviving fields was 111 for the 
first curd, and 129 for the second one. It is 
important to emphasize that the possibility of 
prediction refers only to the number, but not to 
the distribution of the surviving fields, so the 
obtained curds with the same probability in the 
process and with the same number of stages 
can differ significantly in the visual sense, 
although they can have the same actual 
number of the surviving fields.  

Also, when overlapping two or more random 
curds, the probability of possible outcomes 
depends on the individual probabilities for 
each overlapped random curd, and it equals 
the product of these individual probabilities. 
For example, in Figure 3, the probability of 
each of the four possible outcomes of the 
model obtained by overlapping two curds was 
1/2 x 1/2=1/4.  

The following question can be asked now: does 
the order of the ‘phasic’ probabilities somehow 
affect the characteristics of the obtained 
model, and thus the final appearance of the 
generated rhythm if we have the same number 
of stages in the process, the same ‘phasic’ 
probabilities which give the same final 
probability, and the same number of the 
expected surviving fields? In order to 
determine this, we generated two random 
curds, as shown in Figure 6, in the process of 
curdling through three stages, with the same 
phasic probabilities, but in a different order. 

The order of the probabilities for the first curd was 
as follows: 3/4 for the first stage, 2/3 for the 

second one, and 1/3 for the third one. The 
probability that a subsquare would survive after 
the third stage was 3/4 x 2/3 x 1/3=1/6. 
Therefore, the expected number of the surviving 
subsquares was 4096/6=682. At the end of the 
process, 656 subsquares actually survived. 
The order of the probabilities for the second 
curd was as follows: 1/3 for the first stage, 2/3 
for the second one, and 3/4 for the third one. 
The probability that a subsquare would survive 
after the third stage was the same as with the 
first curd; namely, it was 1/3 x 2/3 x 3/4=1/6. 
The expected number of the surviving 
subsquares was also 682. At the end of the 
process, 698 subsquares actually survived.  

Comparing the order of probabilities for each 
stage of the generating process, and the final 
distribution of the surviving subsquares (and 
bearing in mind that the final amounts of the 
surviving subsquares with these curds were 
approximately the same), we could notice the 
following: that the first random curd, whose 
probabilities were reduced with every stage, 
looked ‘sparser’ compared to the other one, 
whose probabilities increased with every stage, 
because the total amount of the surviving fields 
was spread over a larger total surface even in 
the first stage. On the other hand, because of 
the preference for a smaller probability even in 
the first stage, the further procedure with the 
second random curd was limited to a smaller 
total surface, which later resulted in a higher 
concentration of the surviving subsquares, so 
the zones with the surviving fields looked 
denser or more compact.  

At this point we can conclude that the 
characteristic of clustering will be more 
expressed in objects if we chose smaller 
probabilities of surviving in their initial stages, 
and here the first stage is especially significant 
in relation to subsequent stages. Because of this 

density, the boundaries between the surviving 
subsquares from the previous stage become 
more visible, so the visual presence of a 
geometric system in the process, i.e. the regular 
grid or lattice, is more emphasized, which can 
cause these curds and, further, the generated 
rhythm in architecture, to look less ‘natural’.  

Number of Stages 

The number of stages in the process of 
curdling is important because the amount of 
the surviving subintervals, subsquares, or 
subcubes is reduced, compared to the initial 
amount, in every next stage of the generating 
process of this type of fractals. Namely, they 
cluster and group on a surface which gets smaller 
and smaller, whereas the distances between the 
surviving fields increase. Thus, the value of the 
fractal dimension decreases from one stage to 
another, and can be calculated using the ‘box-
counting method’ for different stages of the 
process (Bovill, 1996; Mandelbrot, 1982). Also, 
the size of subintervals, subsquares, or subcubes 
decreases with every next stage, while their 
number increases at the same rate.  

Here we can ask the next question regarding the 
use of these fractal objects as a design tool: can 
we reach a random curd, as a potential model of 
rhythm with the desired characteristics regarding 
the number and size of subintervals, subsquares, 
or subcubes, and regarding the desired relation of 
the two possible conditions ‘survived – didn’t 
survive’, through a different number of stages of 
the process, and will the preference for the 
smaller or larger number of stages affect the 
characteristics of the obtained random curd, and 
even further, the features of the generated rhythm 
in architecture? For example, if we need a random 
curd as a mathematical model for paving a floor 
(dim. 20x20m) with tiles (dim. 30x30cm), in 
two colours, so that the presence of one colour 

 
Figure 6. Two random curds generated with the same phasic probabilities, but in a different order 
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is significantly smaller than the presence of the 
second colour (e.g. in the ratio of 1:8), then we 
can take a random curd with 64x64=4096 
squares as a potentially appropriate model, 
where 1/9 of the squares should be the 
squares which survived all the previous stages. 
We can obtain such a model by generating a 
random curd in the process of curdling through 
three stages, where the probability that the 
subsquare will survive is 2/3 in the first stage, 
1/2 in the second stage, and 1/3 in the third 
one. After the third stage, the probability will 
equal to the one we need, 2/3 x 1/2 x 
1/3=1/9. In order to get 64 x 64 subsquares in 
the third stage, the grid, or raster should have 
42 subsquares, each in every stage. However, 
the desired model can also be obtained by 
generating a random curd in the process of 
curdling through two stages, where the probability 
that the subsquare will survive is 1/3 in the first 
stage, and also 1/3 in the second one. After the 
second stage, the probability will also equal 
the one we need, 1/3 x 1/3=1/9. In order to 
get 64 x 64 subsquares in the second stage, 
the grid, or raster must have 82 subsquares, 
each in every stage. 

In Figure 7, we can see two random curds, 
both of which had the same number and size of 
subsquares in the final stage, as well as 
approximately the same number of the 
surviving subsquares: the first one - 436, and 
the second one - 417 (the expected number of 
the surviving subsquares was 4096/9=455 for 
both of them).  

Comparing these two curds, we can observe a 
difference in the way in which the surviving 
squares are clustered because of the different 
number of stages. Namely, in order to have the 
same probability of the surviving fields after the 
final stage, with the first curd (the one generated 
through three stages) the probabilities of surviving 
are greater for the first and the second stage, so 
the ‘clustering of matter’ is more gradual, and the 
‘surviving matter’ looks sparser; it spreads over a 
larger basic surface. Whereas, for the same 
reason, in the second case (the curd generated 
through two stages), the probability in the first 
stage is smaller, and even as early as that, the 
clustering of matter, or the concentration of the 
further process on a smaller total surface, is 
greater. This connection between probability and 
concentration is described in the Section 
Probability for Each Stage.  

CONCLUSIONS 

Random curds may be accepted as a design 
tool in architecture, with certain limitations. 
The limitations in the use of these fractal 
objects refer to the fact that they are generated 

in the process which is nondeterministic, so 
they have a component of randomness. Also, 
the process of curdling (the word derived from 
the verb curdle ) (Mandelbrot, 1982) 
necessarily leads to an irregular distribution, 
unequal density, to a large concentration in 
certain sections, whereas some other sections 
remain completely ‘empty’. 

Certain characteristics of models, such as the 
size and number of subintervals, subsquares, 
or subcubes, can be determined in advance, in 
such a way that they completely correspond to 
the requirements of the program. Also, the 
relation between the presence of different 
elements, and the characteristics such as 
sparsity or density, or greater or smaller 
visibility of the regular grid or lattice, can be 
controlled and predicted to a certain extent, 
with the proper selection of the number of 
stages and probabilities for each stage. 
However, the exact position, or distribution of 
the surviving fields, cannot be predicted. It is 
only possible to repeat the process until we get 
the model whose distribution of the surviving 
fields, for example, best meets the requirements 
and suits the needs of a specific case. Also, 
sometimes only one segment of the generated 

curd can be taken as a model. In that case, it is 
possible to select the segment from the whole 
curd whose shape and the layout of the surviving 
fields would best suit the needs (Figure 8). 

Since the values of visual features of architectural 
elements are usually conditioned by a great 
number of requirements and limitations relating to 
different aspects of architecture (purpose, 
materialization, construction, social and natural 
context, etc.), (Ching, 2007), and on the other 
hand, since they often represent the groups of 
units which require the similar or identical 
treatment for the observed level of spatial 
organization, the following question can be asked: 
in what situations and to what extent can random 
curds be used as mathematical models in the 
design processes?     

We will give only a general answer to this 
question here: because of the aforementioned 
random, unpredictable and uneven distribution of 
elements with the clustering tendency, random 
curds can be used as a design tool in the 
situations when the values of visual features are 
not strictly conditioned by various requirements 
and limitations placed before an architectural 
element (e.g. the layout of the floor tiles, or façade 
elements in several colours, as shown in Figure 1, 
where the issue of rhythm is sometimes reduced 
only to the visual aspect of the composition), or in 
the situations when the uneven distribution with 
the clustering tendency is not only acceptable, but 
also desirable. Such a case is shown in Figures 
5a and 5b, where the component of randomness 
gives the distribution of the elements the wanted 
‘natural look’, and on the other hand, the 
clustering of the elements (trees, benches, 
‘empty’ fields) creates different microambients on 
the observed surface of a park, which can 
represent the framework for performing different 
activities, suit different users, and potentially 
satisfy different needs.  

 
Figure 7. Two random curds generated through a different number of stages of the process 

 

 
Figure 8. A segment of the generated curd with 

desirable shape and the layout of the surviving fields 
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